
Becoming A SQL Guru

Stella Nisenbaum

Stella.Nisenbaum@avant.com

11/10/2015

The Plan
1 Becoming A SQL Guru

What will we cover?

- Review Some Basics

- Set Operators

- Subqueries

- Aggregate Filter Clause

- Window Functions Galore

- CTE’s

- Lateral

Queries – Syntax Overview
2 Becoming A SQL Guru

When we think of Standard SQL Syntax...

SELECT expression

FROM table

WHERE condition

ORDER BY expression

Queries – Syntax Overview
3 Becoming A SQL Guru

Or maybe we think…

SELECT expression

FROM table

[JOIN TYPE] table2

ON join_condition

WHERE condition

ORDER BY expression

Queries – Syntax Overview
4 Becoming A SQL Guru

Then we think…

SELECT expression

FROM table

JOIN_TYPE table2

ON join_condition

WHERE condition

GROUP BY expression

HAVING condition

ORDER BY expression

Queries – Syntax Overview
5 Becoming A SQL Guru

[WITH [RECURSIVE] with_query [, ...]]

SELECT [ALL | DISTINCT [ON (expression [, ...])]]

 [* | expression [[AS] output_name] [, ...]]

 [FROM from_item [, ...]]

 [WHERE condition]

 [GROUP BY expression [, ...]]

 [HAVING condition [, ...]]

 [WINDOW window_name AS (window_definition) [, ...]]

 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]

 [ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]]

 [LIMIT { count | ALL }]

 [OFFSET start [ROW | ROWS]]

 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]

 [FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } [OF table_name [, ...]] [NOWAIT

] [...]]

Queries – Syntax Overview
6 Becoming A SQL Guru

where from_item can be one of:

 [ONLY] table_name [*] [[AS] alias [(column_alias [, ...])]]

 [LATERAL] (select) [AS] alias [(column_alias [, ...])]

 with_query_name [[AS] alias [(column_alias [, ...])]]

 [LATERAL] function_name ([argument [, ...]])

 [WITH ORDINALITY] [[AS] alias [(column_alias [, ...])]]

 [LATERAL] function_name ([argument [, ...]]) [AS] alias (column_definition [, ...])

 [LATERAL] function_name ([argument [, ...]]) AS (column_definition [, ...])

 [LATERAL] ROWS FROM(function_name ([argument [, ...]]) [AS (column_definition [, ...])

] [, ...])

 [WITH ORDINALITY] [[AS] alias [(column_alias [, ...])]]

 from_item [NATURAL] join_type from_item [ON join_condition | USING (join_column [, ...])]

Queries – Syntax Overview
7 Becoming A SQL Guru

and with_query is:

 with_query_name [(column_name [, ...])] AS (select | values | insert | update | delete)

VALUES (expression [, ...]) [, ...]

 [ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]

 [LIMIT { count | ALL }]

 [OFFSET start [ROW | ROWS]]

 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]

TABLE [ONLY] table_name [*]

Queries – Basic Examples
8 Becoming A SQL Guru

VALUES (1, 'one'), (2, 'two'), (3, 'three');

Column1 Column2

1 one

2 two

3 three

TABLE customers;

Is equivalent to:

SELECT * FROM customers;

SELECT sum(column1)

From

(VALUES (1, 'one'), (2, 'two'), (3, 'three'))A;

INSERT INTO tmp (num, word)

VALUES (1, 'one'), (2, 'two'), (3, 'three')

Join Types
9 Becoming A SQL Guru

- Inner Join:

Joins each row of the first table with each row from the second table for which the

condition matches. Unmatched rows are removed

- Outer Join:

Joins each row from the left table with each row from the right table for which the

condition matches. Unmatched rows are added to the result set such that:

- Left: All rows from the left table are returned, with null values displayed for the

right table

- Right: All rows from the right table are returned, with null values displayed for the

left table

- Full: All rows from both tables are returned, with null values displayed for

unmatched rows in each table.

- Cross Join:

Creates a Cartesian Product of two tables

Cross Joins: Example
10 Becoming A SQL Guru

store_id store_city

1 chicago

2 dallas

product_id product_desc

1 coffee

2 tea

stores

SELECT * FROM stores

CROSS JOIN products

SELECT * FROM stores, products

store_id store_city product_id product_desc

1 chicago 1 coffee

1 chicago 2 tea

2 dallas 1 coffee

2 dallas 2 tea

Results:

products

Set Operations
11 Becoming A SQL Guru

ID customer_name city postal_code country

1 Stella Nisenbaum Chicago 60605 USA

2 Stephen Frost New York 10012 USA

3 Jeff Edstrom Stockholm 113 50 Sweden

4 Artem Okulik Minsk 220002 Belarus

customers

ID supplier_name city postal_code country revenue

1 Herpetoculture, LLC Meriden 06451 USA 300,000,000

2 Bodega Privada Madrid 28703 Spain 700,000,000

3 ExoTerra Montreal H9X OA2 Canada 400,000,000

4 Goose Island Beer, Co Chicago 60612 USA 250,000,000

suppliers

Set Operations: Union vs Union ALL
12 Becoming A SQL Guru

SELECT city FROM customers

UNION ALL

SELECT city FROM suppliers

SELECT city FROM customers

UNION

SELECT city FROM suppliers

city

Chicago

New York

Stockholm

Minsk

Meriden

Madrid

Montreal

Chicago

city

Chicago

New York

Stockholm

Minsk

Meriden

Madrid

Montreal

Set Operations: Except vs Intersect
13 Becoming A SQL Guru

SELECT city FROM customers

EXCEPT

SELECT city FROM suppliers

SELECT city FROM customers

INTERSECT

SELECT city FROM suppliers

city

New York

Stockholm

Minsk

city

Chicago

Subqueries: Uncorrelated
14 Becoming A SQL Guru

Uncorrelated subquery:

 - Subquery calculates a constant result set for the upper query

 - Executed only once

SELECT supplier_name, city

FROM suppliers s

WHERE s.country in (SELECT country FROM customers)

supplier_name city

Herpetoculture, LLC Meriden

Goose Island Beer, Co Chicago

Subqueries: Correlated
15 Becoming A SQL Guru

Correlated subquery:

 - Subquery references variables from the upper query

 - Subquery has to be re-executed for each row of the upper query

 - Can often be re-written as a join

SELECT supplier_name, city

, (SELECT count(distinct id) FROM customers c WHERE c.country=s.country) cust_ct

FROM suppliers s

supplier_name country cust_ct

Herpetoculture, LLC USA 2

Bodega Privada Madrid 0

ExoTerra Canada 0

Goose Island Beer, Co USA 2

Subqueries: Correlated – Re-Written using Join
16 Becoming A SQL Guru

SELECT s.supplier_name, s.city

, count(distinct c.id) cust_ct

FROM suppliers s

LEFT JOIN customers c

 ON s.country = c.country

GROUP BY 1,2

supplier_name country cust_ct

Herpetoculture, LLC USA 2

Bodega Privada Madrid 0

ExoTerra Canada 0

Goose Island Beer, Co USA 2

Filtered Aggregates – The Old Way
17 Becoming A SQL Guru

GOAL: Get a count of all suppliers and a count of suppliers whose revenue

is greater than or equal to 4 Million

SELECT COUNT (DISTINCT id) as all_suppliers

, COUNT(DISTINCT

 CASE

 WHEN revenue >=400000000

 THEN id

 ELSE NULL

 END) as filtered_suppliers

FROM suppliers s

all_suppliers filtered_suppliers

4 2

Filtered Aggregates – The New Way
18 Becoming A SQL Guru

AGGREGATE FILTER CLAUSE – GENERAL SYNTAX:

aggregate_name (ALL | DISTINCT expression [, ...]) [FILTER (WHERE

filter_clause)]

SELECT COUNT(DISTINCT id) as all_suppliers

, COUNT (DISTINCT id) FILTER (WHERE revenue >=400000000) filtered_suppliers

FROM suppliers s

all_suppliers filtered_suppliers

4 2

Window Functions - Basics
19 Becoming A SQL Guru

What is a window function?
A function which is applied to a set of rows defined by a window descriptor and returns a

single value for each row from the underlying query

When should you use a window function?
Any time you need to perform calculations or aggregations on your result set while

preserving row level detail

Window Functions - Syntax
20 Becoming A SQL Guru

function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER

window_name

function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)] OVER (

window_definition)

function_name (*) [FILTER (WHERE filter_clause)] OVER window_name

function_name (*) [FILTER (WHERE filter_clause)] OVER (window_definition)

Where window_definition is:

[existing_window_name]

[PARTITION BY expression [, ...]]

[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [,

...]]

[frame_clause]

{ RANGE | ROWS } frame_start

{ RANGE | ROWS } BETWEEN frame_start AND frame_end

Window Functions – Frame Clause
21 Becoming A SQL Guru

Frame_clause can be one of :

{ RANGE | ROWS } frame_start

{ RANGE | ROWS } BETWEEN frame_start AND frame_end

Where frame_start can be one of:

UNBOUNDED PRECEDING

Value PRECEDING

CURRENT ROW

Where frame_end can be one of:

UNBOUNDED FOLLOWING

Value FOLLOWING

CURRENT ROW - (default)

When frame_clause is omitted, default to RANGE UNBOUNDED PRECEDING

Becoming A SQL Guru 22

Window Functions – Basic Example

SELECT

supplier_name , country, revenue

, avg(revenue) OVER (PARTITION BY country)

FROM suppliers

supplier_name country revenue avg

ExoTerra Canada 400,000,000 400,000,000

Bodega Privada Spain 700,000,000 700,000,000

Herpetoculture, LLC USA 300,000,000 275,000,000

Goose Island Beer, Co USA 250,000,000 275,000,000

Becoming A SQL Guru 23

Window Functions – Range vs Rows

With RANGE all duplicates are considered part of the same group and the function is

run across all of them, with the same result used for all members of the group.

SELECT

supplier_name , country, revenue

, avg(revenue) OVER (ORDER BY country RANGE UNBOUNDED PRECEDING) ::int

FROM suppliers

supplier_name country revenue avg

ExoTerra Canada 400,000,000 400,000,000

Bodega Privada Spain 700,000,000 550,000,000

Herpetoculture, LLC USA 300,000,000 412,500,000

Goose Island Beer, Co USA 250,000,000 412,500,000

Becoming A SQL Guru 24

Window Functions – Range vs Rows

With ROWS, can get a “running” average even across duplicates within the ORDER

BY

SELECT

supplier_name , country, revenue

, avg(revenue) OVER (ORDER BY country ROWS UNBOUNDED PRECEDING) ::int

FROM suppliers

supplier_name country revenue avg

ExoTerra Canada 400,000,000 400,000,000

Bodega Privada Spain 700,000,000 550,000,000

Herpetoculture, LLC USA 300,000,000 466,666,667

Goose Island Beer, Co USA 250,000,000 412,500,000

Becoming A SQL Guru 25

Window Functions – Window Clause

SELECT

supplier_name , country, revenue

, sum(revenue) OVER mywindow as sum

, avg(revenue) OVER mywindow ::int as avg

FROM suppliers

WINDOW mywindow as (PARTITION BY country)

supplier_name country revenue sum avg

ExoTerra Canada 400,000,000 400,000,000 400,000,000

Bodega Privada Spain 700,000,000 700,000,000 700,000,000

Herpetoculture, LLC USA 300,000,000 550,000,000 275,000,000

Goose Island Beer, Co USA 250,000,000 550,000,000 275,000,000

Becoming A SQL Guru 26

Window Functions – Row Number
SELECT

Row_number() OVER () as row

,supplier_name , country, revenue

, sum(revenue) OVER mywindow as sum

, avg(revenue) OVER mywindow ::int as avg

FROM suppliers

WINDOW mywindow as (PARTITION BY country)

Row supplier_name country revenue sum avg

1 ExoTerra Canada 400,000,000 400,000,000 400,000,000

2 Bodega Privada Spain 700,000,000 700,000,000 700,000,000

3 Herpetoculture, LLC USA 300,000,000 550,000,000 275,000,000

4 Goose Island Beer, Co USA 250,000,000 550,000,000 275,000,000

Becoming A SQL Guru 27

Window Functions – Rank
SELECT

Rank() OVER (ORDER BY country desc) as rank

, supplier_name , country, revenue

, sum(revenue) OVER mywindow as sum

, avg(revenue) OVER mywindow ::int as avg

FROM suppliers

WINDOW mywindow as (PARTITION BY country)

rank supplier_name country revenue sum avg

1 Herpetoculture, LLC USA 300,000,000 550,000,000 275,000,000

1 Goose Island Beer, Co USA 250,000,000 550,000,000 275,000,000

3 Bodega Privada Spain 700,000,000 700,000,000 700,000,000

4 ExoTerra Canada 400,000,000 400,000,000 400,000,000

Becoming A SQL Guru 28

Window Functions – Rank with Order By

SELECT

Rank() OVER (ORDER BY country desc) as rank

, supplier_name , country, revenue

, sum(revenue) OVER mywindow as sum

, avg(revenue) OVER mywindow ::int as avg

FROM suppliers

WINDOW mywindow as (PARTITION BY country)

Order by supplier_name

rank supplier_name country revenue sum avg

3 Bodega Privada Spain 700,000,000 700,000,000 700,000,000

4 ExoTerra Canada 400,000,000 400,000,000 400,000,000

1 Goose Island Beer, Co USA 250,000,000 550,000,000 275,000,000

1 Herpetoculture, LLC USA 300,000,000 550,000,000 275,000,000

Becoming A SQL Guru 29

Window Functions – nTile

SELECT ntile(2) OVER (ORDER BY revenue) as ntile

, supplier_name

, country

, revenue

, sum(revenue) OVER mywindow as sum

, avg(revenue) OVER mywindow ::int as avg

FROM suppliers

WINDOW mywindow as (PARTITION BY country)

rank supplier_name country revenue sum avg

1 Goose Island Beer, Co USA 250,000,000 550,000,000 275,000,000

1 Herpetoculture, LLC USA 300,000,000 550,000,000 275,000,000

2 ExoTerra Canada 400,000,000 400,000,000 400,000,000

2 Bodega Privada Spain 700000000 700.000.000 700,000,000

Becoming A SQL Guru 30

CTE’s – Introduction

• CTE = Common Table Expression

• Defined by a WITH clause

• Can be seen as a temp table or view which is private to a given query

• Can be recursive/self referencing

Syntax:

[WITH [RECURSIVE] with_query [, ...]]

Where with_query is:

 with_query_name [(column_name [, ...])] AS (select | values | insert |

 update | delete)

 Recursion requires the following syntax within the WITH clause:

 non_recursive_term UNION [ALL] recursive_term

Becoming A SQL Guru 31

CTE’s – Non Recursive Example

WITH c (country, customer_ct)

as (SELECT country, count(distinct id) as customer_ct

 FROM customers

 GROUP BY country

)

, s (country, supplier_ct)

as (SELECT country, count(distinct id) as supplier_ct

FROM suppliers

GROUP BY country)

SELECT coalesce(c.country, s.country) as country, customer_ct, supplier_ct

FROM c

FULL OUTER JOIN s USING (country)

Becoming A SQL Guru 32

CTE’s – Non Recursive Example

country customer_ct supplier_ct

Belarus 1

Sweden 1

USA 2 2

Spain 1

Canada 1

Results:

Becoming A SQL Guru 33

CTE’s – Recursive Example

List all numbers from 1 to 100:

WITH RECURSIVE cte_name(n)

AS

(VALUES(1)

UNION

SELECT n+1

FROM cte_name

WHERE n<100)

SELECT * FROM cte_name ORDER by n

Becoming A SQL Guru 34

CTE’s – Recursive Query Evaluation

1. Evaluate the non-recursive term, discarding duplicate rows (for UNION). Include all

remaining rows in the result of the recursive query as well as in a temporary working

table.

2. While the working table is not empty, repeat these steps:

 a. Evaluate the recursive term, substituting the current contents of the working

 table for the recursive self reference. Discard duplicate rows(for UNION).

 Include all remaining rows in the result of the recursive query, and also

 place them in a temporary intermediate table.

 b. Replace the contents of the working table with the contents of the

 intermediate table, then empty the intermediate table.

Becoming A SQL Guru 35

CTE’s – Another Recursive Example

Id Whole Part Count

1 Car Doors 4

2 Car Engine 1

3 Car Wheel 4

4 Car Steering wheel 1

5 Cylinder head Screw 14

6 Doors Window 1

7 Engine Cylinder head 1

8 Wheel Screw 5

Parts

Becoming A SQL Guru 36

CTE’s – Another Recursive Example
Goal: Number of screws needed to assemble a car.

WITH RECURSIVE list(whole, part, ct)

AS

-- non recursive query, assign results to working table and results table

(SELECT whole, part, count as ct FROM parts WHERE whole = ‘car’

-- recursive query with self reference; self reference substituted by working table

-- assigned to intermediary table , working table and appended to results table

UNION

SELECT b.whole, a.part, a.count * b.ct as ct FROM list b

JOIN parts a ON b.part = a.whole

-- empty intermediate table and execute recursive term as long as working table

contains any tuple

)

-- produce final result set

SELECT sum(ct) FROM list WHERE part = ‘screw’

sum

34

Becoming A SQL Guru 37

CTE’s – Another Recursive Example

SELECT * FROM list

ORDER BY whole, part

whole part ct

car cylinder head 1

car doors 4

car engine 1

car screw 20

car screw 14

car steering wheel 1

car wheel 4

car window 4

Becoming A SQL Guru 38

CTE’s – Caveats

• Union vs Union All

• Primary query evaluates subqueries defined by WITH only

once

• Acts as an Optimization Fence

• Only one recursive self-reference allowed

• Name of the WITH query hides any ‘real’ tables

• No aggregates, GROUP BY, HAVING, ORDER BY, LIMIT,

OFFSET allowed in a recursive query

Becoming A SQL Guru 39

CTE’s – Writable CTE

Delete from one table and write into another…

WITH archive_rows(whole, part, count)

AS

(DELETE FROM parts

WHERE whole = ‘car’

RETURNING *

)

INSERT INTO parts_archive

SELECT * FROM archive_rows;

Becoming A SQL Guru 40

CTE’s – Writable CTE

SELECT *

FROM parts_archive

SELECT *

FROM parts

whole part ct

car engine 1

car wheel 4

car doors 4

car steering wheel 1

whole part ct

engine cylinder head 1

cylinder head screw 14

wheel screw 5

doors window 1

Becoming A SQL Guru 41

CTE’s – Recursive Writable CTE

WITH RECURSIVE list(whole, part, ct)

AS

(SELECT whole, part, count as ct

FROM parts

WHERE whole = ‘car’

UNION

SELECT b.whole, a.part, a.count * b.ct as ct

FROM list b

JOIN parts a ON a.whole = b.part

)

INSERT INTO car_parts_list

SELECT * FROM list

Becoming A SQL Guru 42

CTE’s – Recursive Writable CTE

Whole Part Ct

car Engine 1

car Wheel 4

car Doors 4

car Steering wheel 1

car Cylinder head 1

car Screw 20

car Window 4

car Screw 14

SELECT * FROM car_parts_list

Becoming A SQL Guru 43

Lateral

LATERAL is a new JOIN method which allows a subquery in one part of

the FROM clause to reference columns from earlier items in the FROM

clause

• Refer to earlier table

• Refer to earlier subquery

• Refer to earlier set returning function (SRF)

 - Implicitly added when a SRF is referring to an earlier item in the

 FROM clause

Becoming A SQL Guru 44

Lateral – Set Returning Function Example

CREATE TABLE numbers

AS

SELECT generate_series as max_num

FROM generate_series(1,10);

SELECT *

 FROM numbers ,

LATERAL generate_series(1,max_num);

SELECT *

FROM numbers ,

generate_series(1,max_num);

Max_num Generate_series

1 1

2 1

2 2

3 1

3 2

3 3

… ….

Results:

Becoming A SQL Guru 45

Lateral – Subquery Example
This DOES NOT work:

SELECT c.customer_name

, c.country

, s.supplier_name

, s.country

 FROM

customers c

 JOIN

 (SELECT *

FROM suppliers s

WHERE s.country = c.country

ORDER BY revenue

Limit 1) s

 ON true

This DOES work:

SELECT c.customer_name

, c.country

, s.supplier_name

, s.country

 FROM

customers c

 JOIN LATERAL

 (SELECT *

FROM suppliers s

WHERE s.country = c.country

ORDER BY revenue

Limit 1) s

 ON true

Becoming A SQL Guru 46

Lateral – Subquery Example

Customer_name Country Supplier_name Country

Stephen Frost USA Goose Island Beer, Co USA

Stella Nisenbaum USA Goose Island Beer, Co USA

Becoming A SQL Guru 47

Lateral – Subquery Example

We can re-write this logic using a correlated subquery…

SELECT

c.customer_name

, c.country

, s.supplier_name

, s.country

FROM customers c

JOIN suppliers s

 ON s.id =(SELECT id FROM suppliers

 WHERE c.country = country

ORDER BY revenue

Limit 1)

But it’s pretty messy AND less performant!!

Becoming A SQL Guru 48

Thank you !

Questions?

